

## **A Meta-Learning Approach for Graph Representation Learning in Multi-Task Settings**

## Motivation

DIPARTIMENTO

- DI INGEGNERIA

DELL'INFORMAZIONE

### Graph Representation Learning

Università

**DEGLI STUDI** 

DI PADOVA









Decode

Input Graph

**Graph Classification** 

Encoder

Node Classification

Node Embeddings

Link Prediction

Predictions for

downstream task

## **Our Method**

# **Single-Task Adaptation**

### Multi-Task Episodes

- 1 task-specific support set per task
- 1 task-specific target set per task
- Each task can have a different loss





The outer loop's objective becomes to maximize the performance on a validation set, given a *training set, hence pushing towards* generalization.

### Meta-Learning Procedure

- Separate adaptation for each task
- Unique outer loop update

## Problem: Transferability of Er



### Can we generate node embeddings that





### **Davide Buffelli**, Fabio Vandin

{davide.buffelli, fabio.vandin}@unipd.it

## **Experimental Results**

### Setting

- Same architecture for all training strategies
- Datasets from TUDortmund with node labels, graph labels, and node attributes
- Linear model on top of the embeddings from SAME
- Tests in single-task and multi-task scenarios



#### ::...Qt:Q2: Do:iSAME and eSAME lead:to high: quality node embeddings in the single-task &....;

|            | multi-task settings?  |          |                |                |              |              |                         |              |              |              |      |              |                  |             |              |              |      |      |      |      |      |
|------------|-----------------------|----------|----------------|----------------|--------------|--------------|-------------------------|--------------|--------------|--------------|------|--------------|------------------|-------------|--------------|--------------|------|------|------|------|------|
|            |                       |          |                |                |              | GC           | GC                      | Task<br>NC   | LP           | ENZYMES      |      |              | Data<br>PROTEINS |             |              | aset<br>DHFR |      |      | COX2 |      | 2    |
|            |                       |          |                |                |              |              |                         |              |              | GC           | NC   | LP<br>Class  | GC<br>ical En    | NC<br>d-to- | LP<br>End Tr | GC<br>aining | NC   | LP   | GC   | NC   | LP   |
| i P        | Task                  | Model    |                | Data           | set          |              | $\checkmark$            |              |              | 51.6         |      |              | 73.3             |             |              | 71.5         |      |      | 76.7 |      |      |
| ÷ I.,      | Iush                  | Model    | ENZYMES        | PROTEINS       | DHFR         | COX2         |                         | $\checkmark$ | 1            |              | 87.5 | 75.5         |                  | 72.3        | 85.6         |              | 97.3 | 98.8 |      | 96.4 | 98.3 |
| : II       |                       | Cl       | $87.5\pm1.9$   | $72.3\pm4.4$   | $97.3\pm0.2$ | $96.4\pm0.3$ | i——                     |              |              |              |      |              | Fir              | ne-Tu       | ning         |              |      | 2010 |      |      |      |
| : T.       | NC                    | iSAME    | $87.3\pm0.8$   | $81.8\pm1.6$   | $96.6\pm0.3$ | $96.1\pm0.4$ | $\overline{\checkmark}$ | $\checkmark$ |              | 48.3         | 85.3 |              | 73.6             | 72.0        | - 0          | 66.4         | 92.4 |      | 80.0 | 92.3 | ;    |
| :          |                       | eSAME    | $87.8\pm0.7$   | $82.4 \pm 1.6$ | $96.8\pm0.2$ | $96.5\pm0.6$ | ✓                       |              | $\checkmark$ | 49.3         |      | 71.6         | 69.6             |             | 80.7         | 65.3         |      | 58.9 | 80.2 |      | 50.9 |
|            |                       | Cl       | $51.6 \pm 4.2$ | $73.3\pm3.6$   | $71.5\pm2.3$ | $76.7\pm4.7$ |                         | $\checkmark$ | $\checkmark$ |              | 87.7 | 73.9         |                  | 80.4        | 81.5         |              | 80.7 | 56.6 |      | 87.4 | 52.3 |
|            | GC                    | iSAME    | $50.8\pm2.9$   | $73.5\pm1.2$   | $73.2\pm3.2$ | $76.3\pm4.6$ |                         |              |              | iSAME (ours) |      |              |                  |             |              |              |      | ;    |      |      |      |
|            |                       | eSAME    | $52.1\pm5.0$   | $72.6\pm1.6$   | $71.6\pm2.4$ | $75.6\pm4.1$ | $\checkmark$            | $\checkmark$ |              | 50.1         | 86.1 |              | 73.1             | 76.6        |              | 71.6         | 94.8 |      | 75.2 | 95.4 |      |
|            |                       | Cl       | $75.5\pm3.0$   | $85.6\pm0.8$   | $98.8\pm0.7$ | $98.3\pm0.8$ | . ✓                     |              | √            | 50.7         |      | 83.1         | 73.4             |             | 85.2         | 71.6         |      | 99.2 | 77.5 |      | 98.9 |
| A          | LP                    | iSAME    | $81.7 \pm 1.7$ | $84.0 \pm 1.1$ | $99.2\pm0.4$ | $99.1\pm0.5$ | ,                       | ~            | <b>√</b>     | 50.0         | 86.3 | 83.4         |                  | 79.4        | 87.7         |              | 96.5 | 99.3 |      | 95.5 | 99.0 |
|            |                       | eSAME    | $80.1\pm3.4$   | $84.1\pm0.9$   | $99.2\pm0.3$ | $99.2\pm0.7$ | <b>_</b> √              | √            | ✓            | 50.0         | 86.5 | 82.3         | 71.4             | 76.6        | 87.3         | 71.2         | 95.5 | 99.5 | 75.4 | 95.2 | 99.2 |
| ۔<br>معالم | lladata in autor laan |          |                |                |              |              |                         |              |              | 517          | 061  |              | eSA              | ME (        | ours)        | 70.1         | 05.7 |      | 75.6 | 05.5 |      |
| Up         | uate                  | in outer | ιοορ           |                |              |              | ~                       | V            | 1            | 51./         | 80.1 | <u>80 1</u>  | 71.5             | 19.2        | 85 /         | 70.1         | 95.7 | 00.1 | 13.0 | 93.5 | 08.8 |
|            |                       |          |                |                |              |              | <b>√</b>                | /            | *            | 51.9         | 867  | 00.1<br>82.2 | /1./             | 80.7        | 863          | /0.1         | 06.6 | 99.1 | 11.5 | 05.6 | 90.0 |
|            |                       |          |                |                |              |              | 1                       | v<br>v       | ×            | 51.5         | 86.3 | 81.1         | 713              | 79.6        | 86.8         | 702          | 95.0 | 99.5 | 77 7 | 95.0 | 98.8 |

Q3: Do iSAME and eSAME extract information that is not captured by classically trained multi-task models?



**Q4**: Can the node embeddings learned by iSAME and eSAME be used to perform multiple tasks with comparable or better performance than classical multi-task models?

|              |                     |            |              | Task |              |              | Model         |               |               |               |               |
|--------------|---------------------|------------|--------------|------|--------------|--------------|---------------|---------------|---------------|---------------|---------------|
|              | GC                  | NC         | LP           |      | ENZYMES      | PROTEINS     | DHFR          | COX2          |               |               |               |
|              |                     |            |              | ✓    | $\checkmark$ |              | Cl            | $-0.1\pm0.5$  | $4.0 \pm 1.0$ | $-0.3\pm0.2$  | $0.5\pm0.1$   |
| o S MATE     |                     |            | GC           |      |              |              | FT            | $-4.5\pm1.2$  | $0.1\pm0.5$   | $-7.4\pm1.4$  | $0.1\pm0.4$   |
| esayur       |                     |            |              |      |              |              | iSAME         | $-2.3\pm0.9$  | $2.7\pm1.5$   | $-1.2\pm0.4$  | $-1.6\pm0.2$  |
|              |                     |            |              |      |              |              | eSAME         | $-0.8\pm0.8$  | $3.2\pm1.4$   | $-1.8\pm0.3$  | $-1.2\pm0.3$  |
| NO           | GCN                 |            | NC           | ✓    |              |              | Cl            | $-25.3\pm3.2$ | $-5.3\pm1.2$  | $-28.3\pm4.3$ | $-21.4\pm3.4$ |
| NC           |                     |            |              |      |              |              | FT            | $-5.1\pm1.9$  | $-5.4\pm1.5$  | $-24.5\pm3.7$ | $-22.6\pm3.8$ |
|              |                     |            |              |      |              | v            | iSAME         | $4.1\pm0.5$   | $-0.2\pm0.9$  | $0.2\pm3.2$   | $0.2\pm0.5$   |
| ID           |                     |            | LP           |      |              |              | eSAME         | $3.2\pm0.4$   | $-1.2\pm1.1$  | $-0.7\pm3.4$  | $-0.8\pm0.7$  |
|              |                     |            |              |      |              |              | Cl            | $7.2\pm2.7$   | $6.8\pm0.9$   | $-29.1\pm7.7$ | $-28.2\pm4.5$ |
|              |                     | Nodo       | Multi bood   |      | $\checkmark$ | ./           | $\mathbf{FT}$ | $-1.0\pm0.3$  | $3.1\pm1.2$   | $-28.9\pm6.4$ | $-28.3\pm4.2$ |
| Multi-head   |                     |            |              |      |              | v            | iSAME         | $4.4 \pm 1.1$ | $6.1 \pm 1.0$ | $-0.1\pm6.2$  | $-0.6\pm2.5$  |
| Output Layer |                     | Embeddings | Output Layer |      |              |              | eSAME         | $3.9\pm1.3$   | $6.1 \pm 1.1$ | $0.1\pm 6.4$  | $-0.6\pm2.6$  |
|              |                     |            | Adapt in     |      |              |              | Cl            | $1.6 \pm 1.3$ | $2.9\pm0.3$   | $-18.9\pm2.3$ | $-16.9\pm3.1$ |
|              | inner loo           |            |              |      | $\checkmark$ | $\checkmark$ | iSAME         | $1.5\pm1.0$   | $2.2\pm0.2$   | $-0.5\pm1.4$  | $-0.9\pm1.3$  |
|              | Irain in outer loop |            |              |      |              |              | eSAME         | $1.8\pm0.9$   | $2.8\pm0.2$   | $-1.0\pm1.7$  | $-0.4\pm1.2$  |