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Graph Neural Networks
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E.g.

ChebNet [Defferrard et al., NeurIPS 2016]
GCN [Kipf et al., ICLR 2017]

GAT [Velickovic et al., ICLR 2018]

GIN [Xu et al., ICLR 2019]
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Graph Representation Learning

Typical Framework
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Graph Representation Learning

Applications
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Graph Representation Learning
Transferability of Embeddings

I Original Embeddings | Transferred Embeddings

0.90 Node Classification 0.60 Graph Classification 0.80 Link Prediction
0.85 0.55

0.75
0.80 0.50-

- 10.82%

-13.21%

- 14.52%

>0.75 > 0.45- Y 0.70
O O - Y-
© © - 21.29% <
= 0.70 = 0.40
@) @) O
o) O O 0.65
<C 0.651 <C 0.35 o
0.60- 0.30-
0.60-
0.55- 0.25-
0.50- 0.20- 0.55-
NC GC->NC LP->NC GC NC->GC LP->GC LP NC->LP GC->LP

Davide Buffelli



0.90

0.85-

Accuracy
© o o
~ ~ (00)
< o °

O
o
a1

0.50-

Davide Buffelli

Graph Representation Learning

I Original Embeddings

Node Classification

_ 0
13.21% 14520

NC GC->NC LP->NC

Transferability of Embeddings

0.60

0.551

Accuracy
© o ©°
& AN 0y
< v 2

o
w
U1

0.20-

Graph Classification

- 10.82%

-21.29%

GC NC->GC LP->GC
Can we generate node embeddings that generalize across tasks?

0.80

0.55-

| Transferred Embeddings

Link Prediction

LP NC->LP

GC->LP



SAME: Single-Task Adaptation for Multi-Task Embeddings

Multi-Task Episodes : Multi-Learning Procedure Algorithm 1: Proposed Meta-Learning Procedure
Input :Model fy; Episodes £ = {&1, .., &}
_ init(6)
* 1 task-specific support set per task : * Separate adaptation for each task for ‘2’6 ;”O‘ssd: 0
* 1 task-specific target set per task ¢ * Unique outer loop update for t in (GC, NC, LP) do
= 9't) 6
: : 6'(®) « ADAPT(fy, S, L)
. : Two variants: ' e 1 E
Support Set Training Set S SAME o_loss ¢ o_loss—i—TEST(fe,(t),7}(:),£g))
Target Set Validation Set : € end
:  *1ISAME 0 < UPDATE(f, o_loss, §/(GC) ¢/(NC) ¢/(LP))
end

Support Set Target Set

LP
Node Multi-head 3 Node : Multi-head
s o oas Embeddings Output Layer Embeddings  : Output Layer ::
: : ::lAlldlallpltlllljllpllzlelrlll?lol?IIllllllllIIIIIIIIIIIIIIIIIIIIIIIIIIIEEE E Adapt in -
: Update in outer loop Update in outer loop : inner loop :;
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Lxperiments

Do iISAME and eSAME lead to high quality node embeddings in the single-task
setting?

Do iSAME and eSAME lead to high quality node embeddings in the multi-task
setting?

Do iISAME and eSAME extract information that is not captured by classically
trained multi-task models?

Can the node embeddings learned by iSAME and eSAME be used to perform
multiple tasks with comparable or better performance than classical multi-
task models?



Lxperiments
Do iISAME and eSAME lead to high quality node embeddings in the single-task setting?

Table 1: Results for a single-task model trained in a classical supervised manner (Cl), and a linear
classifier trained on the embeddings produced by our meta-learning strategies 1SAME, eSAME).

Davide Buffelli

Task Model Dataset
ENZYMES PROTEINS DHFR COX2
Cl 87.0+ 1.9 72.3+44 97.3+0.2 96.4+0.3
NC 1ISAME  87.3+£0.8 81.8+1.6 96.6+0.3 96.1+04
eSAME 87.8+ 0.7 82.4+ 1.6 96.8 + 0.2 96.5 + 0.6
Cl 01.6 +4.2 73.3+3.6 71.5+2.3 76.7+4.7
GC 1ISAME  50.8+ 2.9 73.0+1.2 73.24+3.2 76.3+4.6
eSAME 52.1 £ 5.0 726+16 71.6+24 75.6+4.1
Cl 79.5 £ 3.0 80.6 £ 0.8 98.8+0.7 98.3+0.8
LP 1ISAME  81.7+ 1.7 84.0+1.1 99.24+0.4 99.14+0.5
eSAME 80.1 + 3.4 84.1 + 0.9 99.2+ 0.3 99.2 + 0.7
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Lxperiments
Do iISAME and eSAME lead to high quality node embeddings in the multi-task setting?

Table 2: Results for a single-task model trained 1n a classical supervised manner, a fine-tuned model
(trained on all three tasks, and fine-tuned on the two shown tasks), and a linear classifier trained on
node embeddings learned with our proposed strategies 1ISAME, eSAME) 1n a multi-task setting.

Task Dataset
GC NC LP ENZYMES PROTEINS DHFR
GC NC LP GC NC LP GC NC LP
Classical End-to-End Training
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Lxperiments

Do iISAME and eSAME extract information that is not captured by classically trained multi-task models?
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Lxperiments

Can the node embeddings learned by iISAME and eSAME be used to perform multiple tasks with comparable or better performance
than classical multi-task models?

Table 3: A,,, (%) results for a classical multi-task model (Cl), a fine-tuned model (FT; trained on all
three tasks and fine-tuned on two) and a linear classifier trained on the node embeddings learned
using our meta-learning strategies (ISAME, eSAME) 1n a multi-task setting.
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Task Model Dataset
GC NC LP ENZYMES PROTEINS DHFR COX2
Cl —0.1 0.5 4.0+ 1.0 —0.3 = 0.2 0.0 0.1
% v FT —4.5+1.2 0.1+£0.5 —74+14 0.1+0.4
1ISAME —2.3 0.9 2.7+ 1.5 —1.2+0.4 —1.6 £0.2
eSAME 0.8 +0.8 3.2+1.4 —1.8+0.3 —1.2+0.3
Cl —253+32 —-H53+12 —-283+43 -—-214+34
% % FT —5.14+1.9 —54+15 —-2454+3.7 —22.6+ 3.8
1ISAME 4.1 0.5 —0.2+0.9 0.2 £+ 3.2 0.2+0.5
eSAME 3.2+0.4 —1.2+1.1 —0.7x 3.4 —0.8 0.7
Cl 7.2+ 2.7 6.8+ 0.9 —29.1+7.7 —28.2+4.5
/ % FT —1.0+0.3 3.1+1.2 —28.9+64 —28.3+1+4.2
1ISAME 4.4+ 1.1 6.1 1. —0.1 6.2 —0.6 £ 2.5
eSAME 3.9+ 1.3 6.1 +1.1 0.1 +6.4 —0.6 £ 2.6
Cl 1.0+ 1.3 2.94+0.3 —18.94+2.3 —-16.9+3.1
v v v 1SAME 1.5+1.0 2.2+ 0.2 —0.0+1.4 —0.9+1.3
eSAME 1.8+0.9 2.8 0.2 —1.0+ 1.7 —0.4+1.2
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Thank you for watching!

Don’t hesitate to come to our virtual booth and have a chat.

You can also contact us at:
{davide.buffelli, fabio.vandin}@unipd.it



