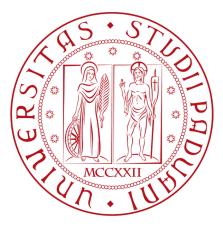
A Meta-Learning Approach for Graph **Representation Learning in Multi-Task Settings**

Davide Buffelli, Fabio Vandin University of Padova {davide.buffelli, fabio.vandin}@unipd.it

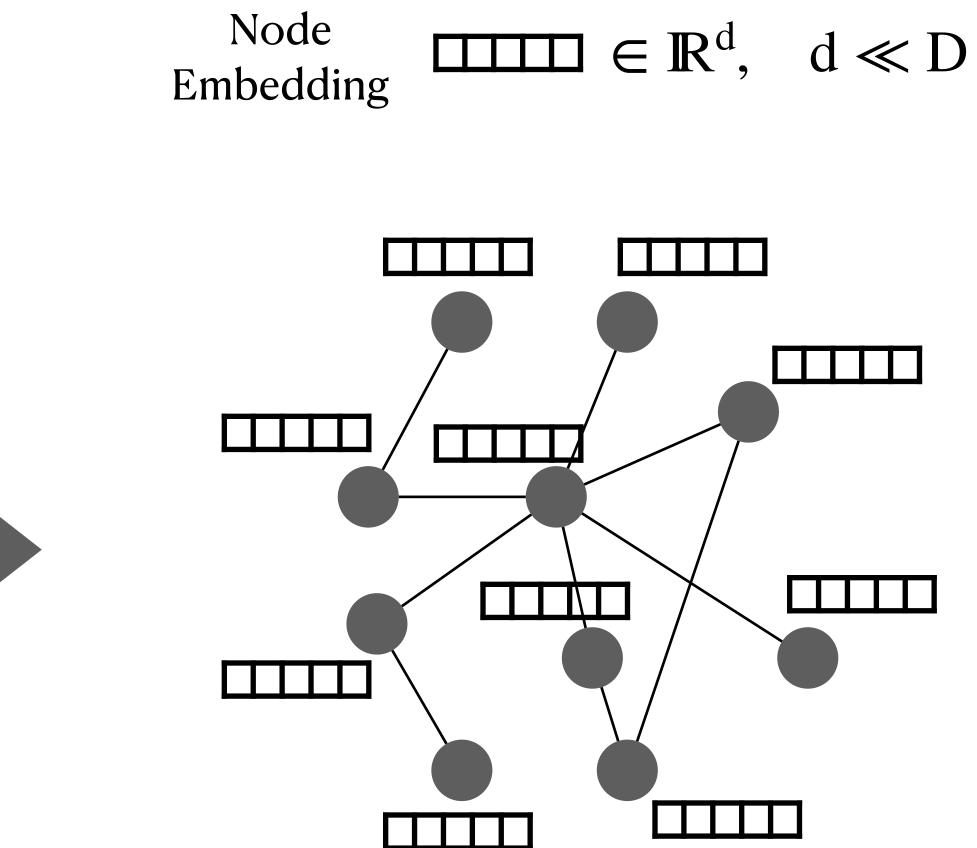


NeurIPS Workshop on Meta-Learning (MetaLearn) 2020

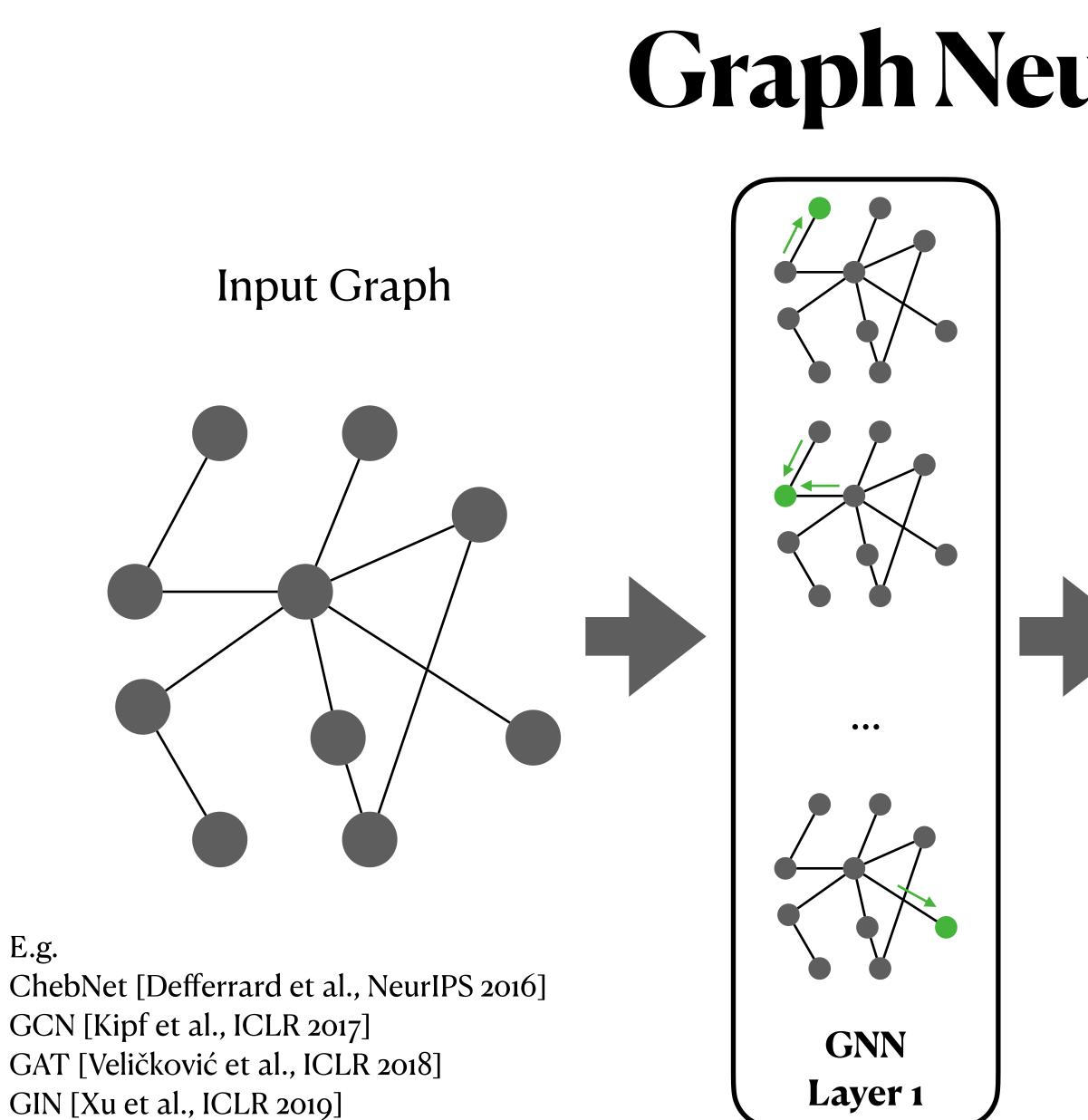
Graph Representation Learning Node Node $\blacksquare \blacksquare \in \mathbb{R}^{\mathbb{D}}$ Embedding Features

Input Graph

Davide Buffelli

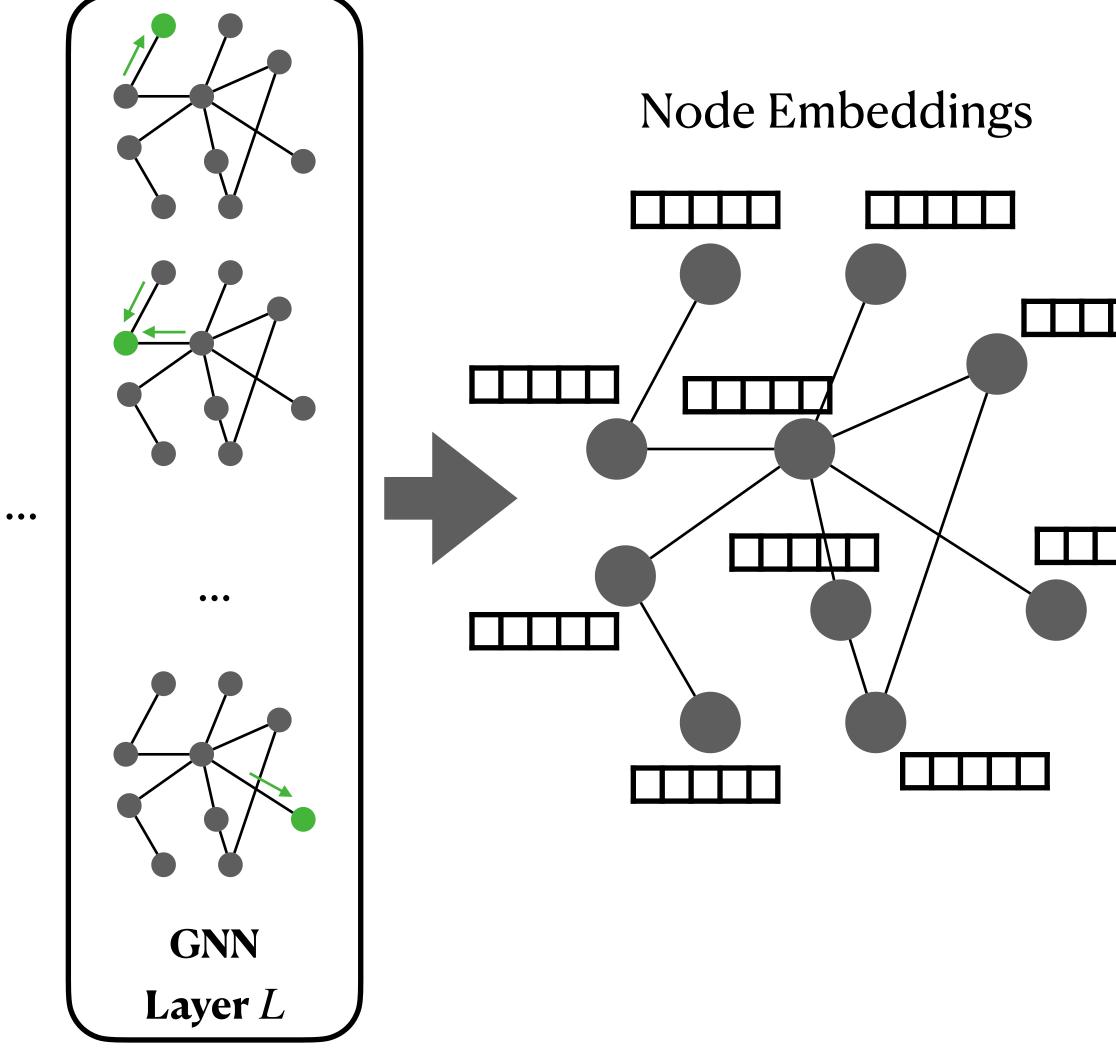


Node Embeddings



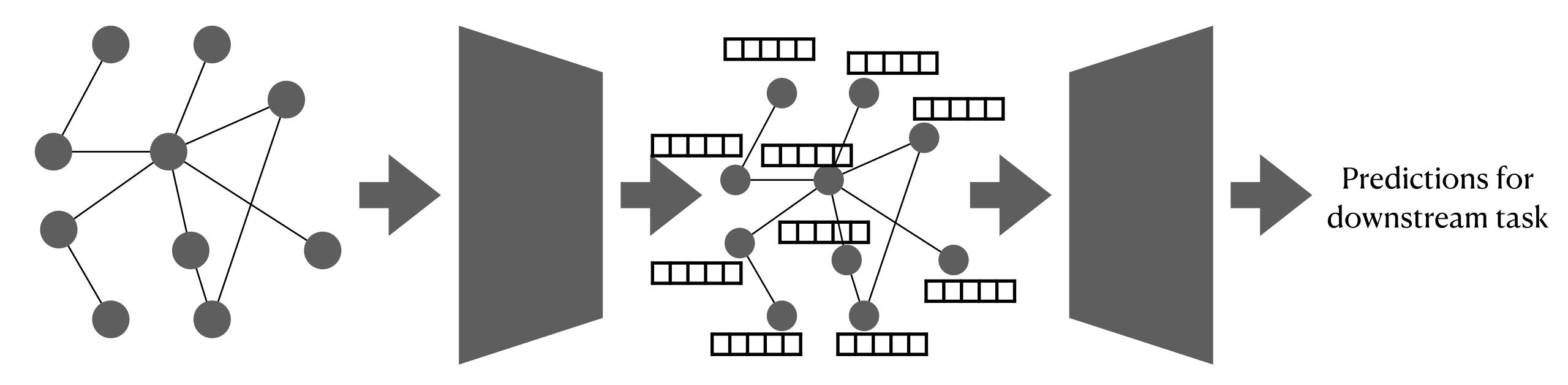
Davide Buffelli

Graph Neural Networks



		_

Graph Representation Learning Typical Framework



Input Graph

Encoder

Node Embeddings

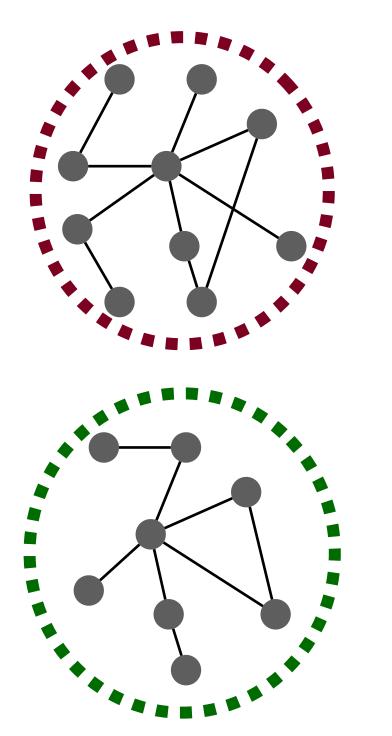
Davide Buffelli

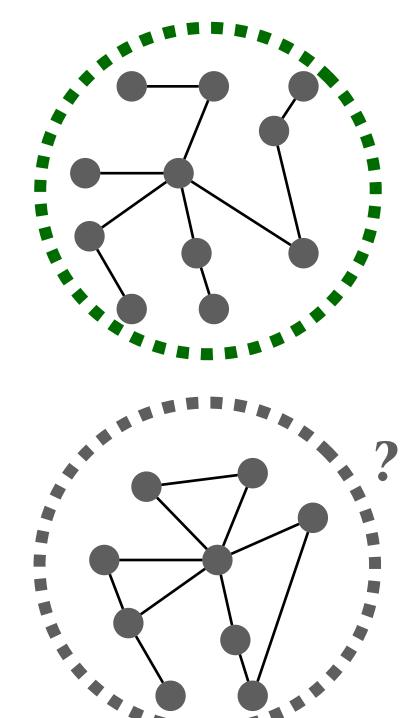
Decoder

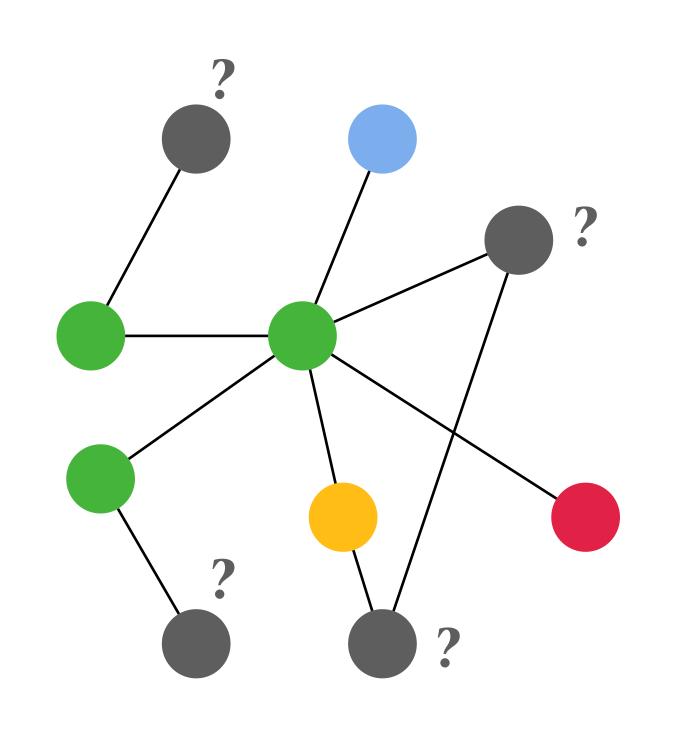
Graph Representation Learning Applications

Graph Classification

Node Classification

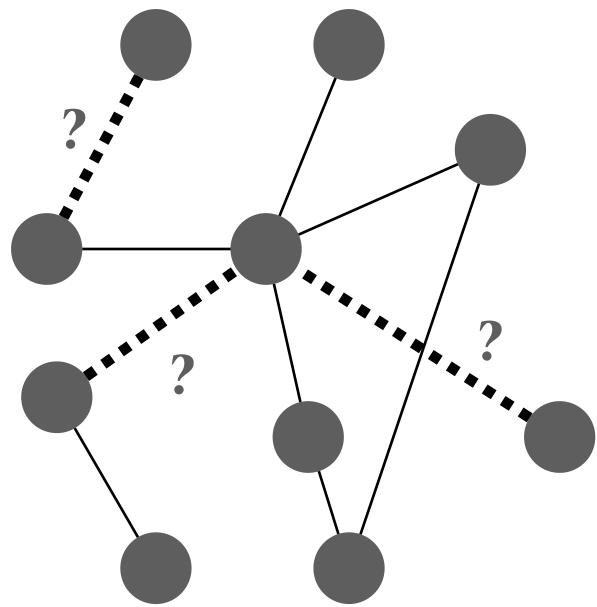






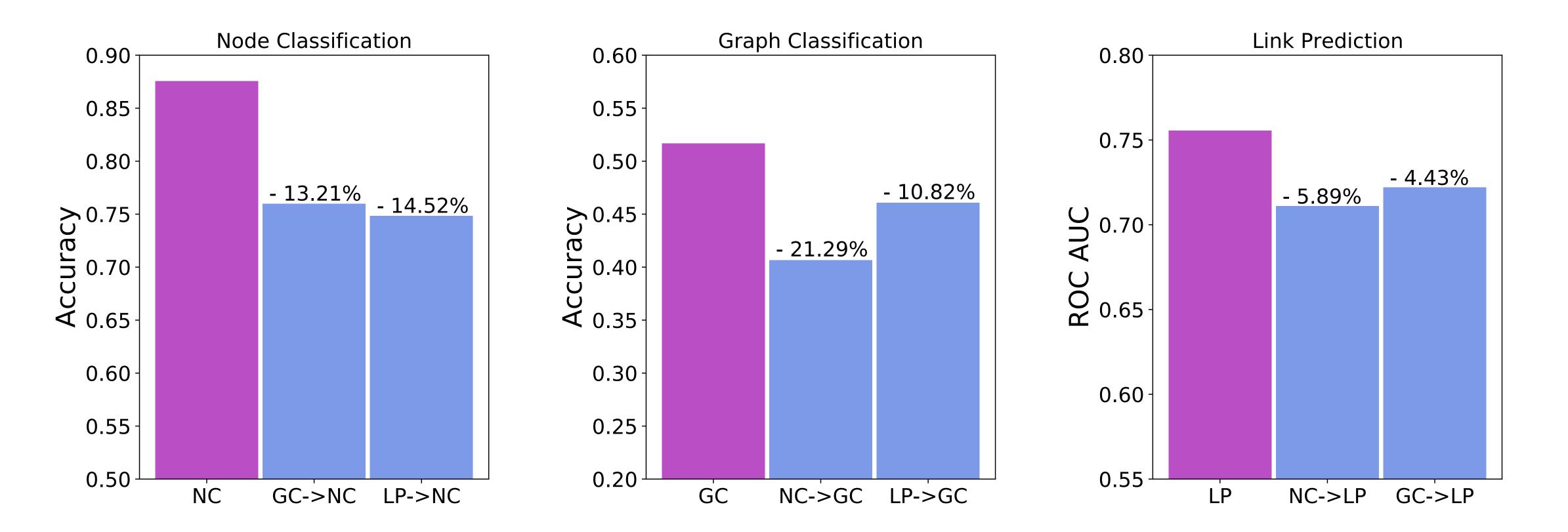
Davide Buffelli

Link Prediction



Graph Representation Learning Transferability of Embeddings

Original Embeddings

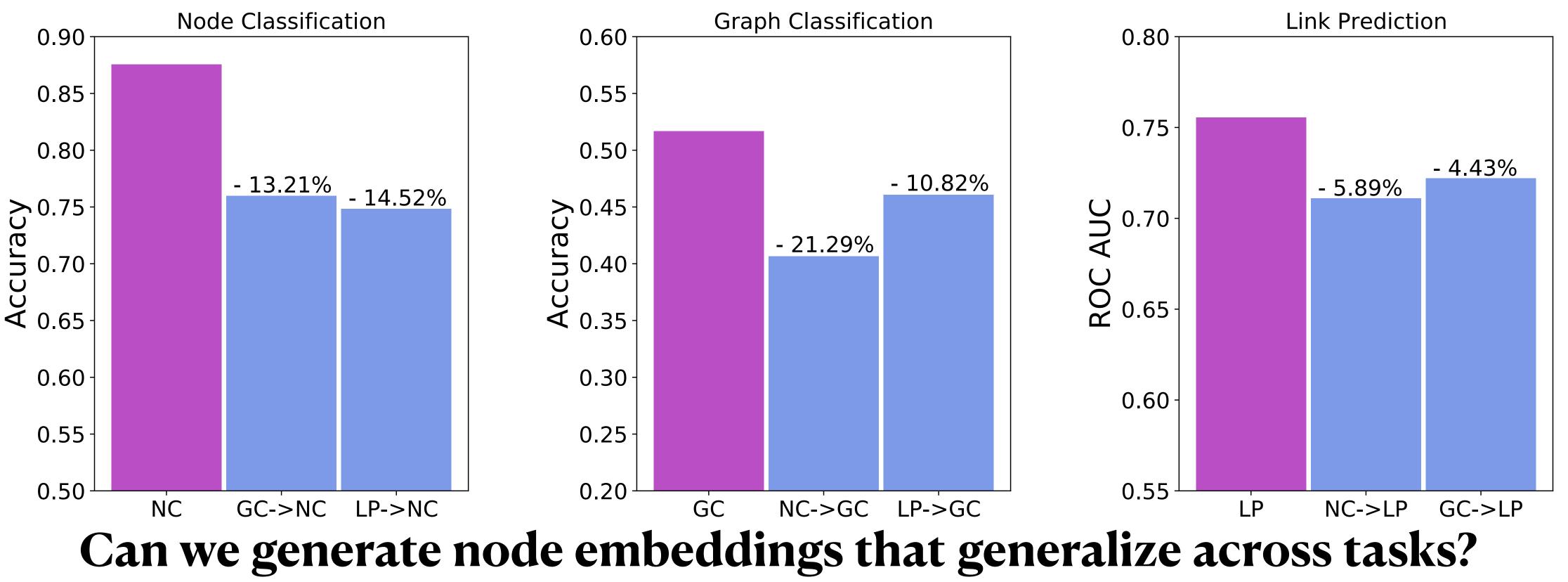


Davide Buffelli

Transferred Embeddings

Graph Representation Learning Transferability of Embeddings

Original Embeddings



Davide Buffelli

Transferred Embeddings

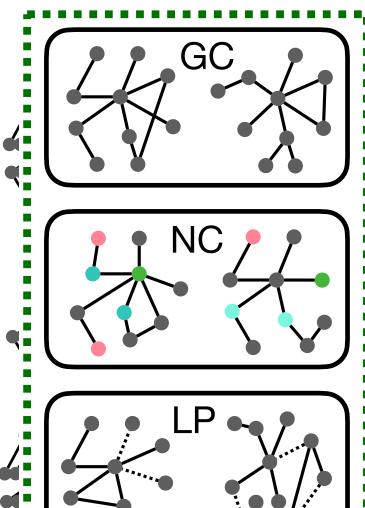
SAME: Single-Task Adaptation for Multi-Task Embeddings

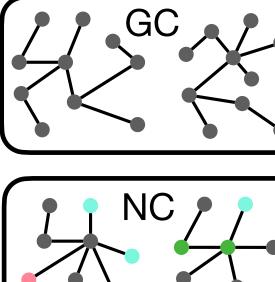
Multi-Task Episodes

- 1 task-specific support set per task
- 1 task-specific target set per task

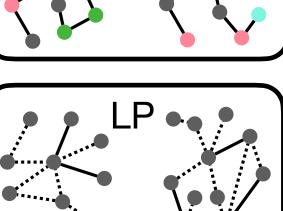
Support Set Target Set

Support Set





Target Set

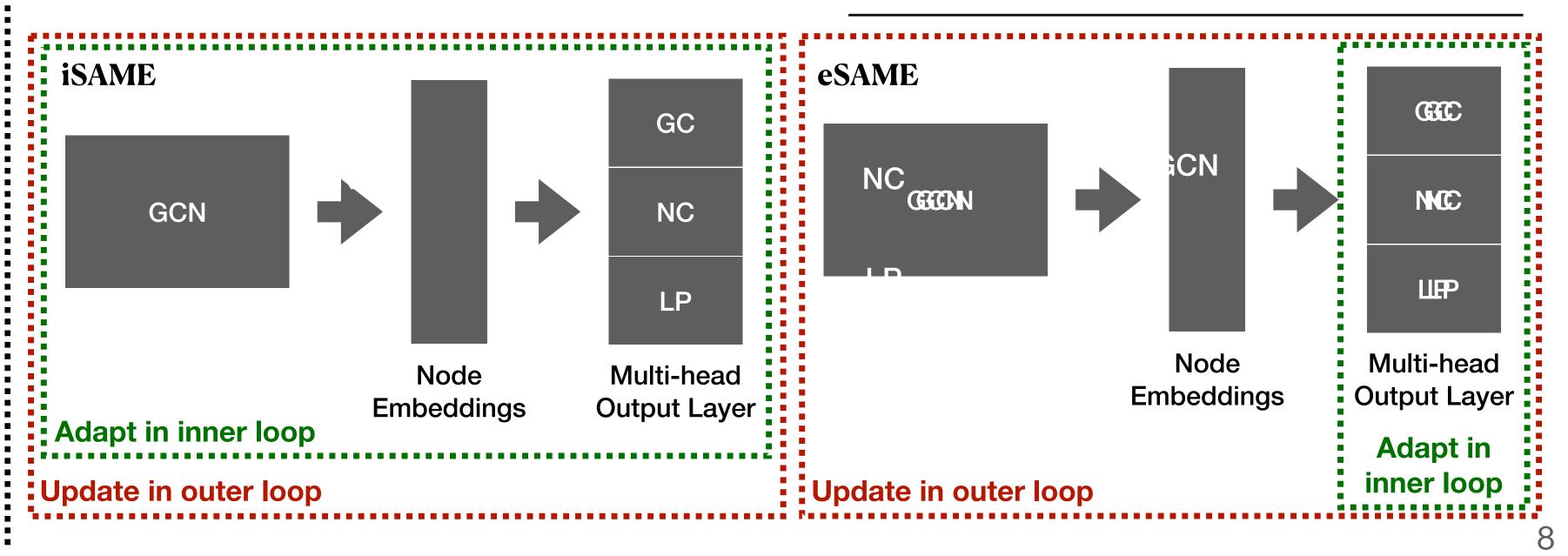


Multi-Learning Procedure

- Separate adaptation for each task
- Unique outer loop update

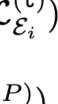
Two variants:

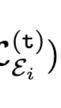
- eSAME
- iSAME



Davide Buffelli

Algorithm 1: Proposed Meta-Learning Procedure **Input**: Model f_{θ} ; Episodes $\mathcal{E} = \{\mathcal{E}_1, ..., \mathcal{E}_n\}$ $init(\theta)$ for \mathcal{E}_i in \mathcal{E} do $o_loss \leftarrow 0$ for t in (GC, NC, LP) do $\theta^{\prime(t)} \leftarrow \theta$ $\theta^{\prime(\mathtt{t})} \leftarrow \mathtt{ADAPT}(f_{\theta}, \mathcal{S}_{\mathcal{E}_{i}}^{(\mathtt{t})}, \mathcal{L}_{\mathcal{E}_{i}}^{(\mathtt{t})})$ $\texttt{o_loss} \leftarrow \texttt{o_loss} + \texttt{TEST}(f_{\theta'^{(\texttt{t})}}, \mathcal{T}_{\mathcal{E}_i}^{(\texttt{t})}, \mathcal{L}_{\mathcal{E}_i}^{(\texttt{t})})$ end $\theta \leftarrow \texttt{UPDATE}(\theta, \texttt{o_loss}, \theta'^{(GC)}, \theta'^{(NC)}, \theta'^{(LP)})$ end





Experiments

- 1. Do iSAME and eSAME lead to high quality node embeddings in the single-task setting?
- 2. Do iSAME and eSAME lead to high quality node embeddings in the multi-task setting?
- 3. Do iSAME and eSAME extract information that is not captured by classically trained multi-task models?
- 4. Can the node embeddings learned by iSAME and eSAME be used to perform multiple tasks with comparable or better performance than classical multi-task models?

Do iSAME and eSAME lead to high quality node embeddings in the single-task setting?

Table 1: Results for a single-task model trained in a classical supervised manner (Cl), and a linear classifier trained on the embeddings produced by our meta-learning strategies (iSAME, eSAME).

Task	Model	Dataset							
		ENZYMES	PROTEINS	DHFR	COX2				
	Cl	87.5 ± 1.9	72.3 ± 4.4	97.3 ± 0.2	96.4 ± 0.3				
NC	iSAME	87.3 ± 0.8	81.8 ± 1.6	96.6 ± 0.3	96.1 ± 0.4				
	eSAME	87.8 ± 0.7	82.4 ± 1.6	96.8 ± 0.2	96.5 ± 0.6				
	C1	51.6 ± 4.2	73.3 ± 3.6	71.5 ± 2.3	76.7 ± 4.7				
GC	iSAME	50.8 ± 2.9	73.5 ± 1.2	73.2 ± 3.2	76.3 ± 4.6				
	eSAME	52.1 ± 5.0	72.6 ± 1.6	71.6 ± 2.4	75.6 ± 4.1				
	Cl	75.5 ± 3.0	85.6 ± 0.8	98.8 ± 0.7	98.3 ± 0.8				
LP	iSAME	81.7 ± 1.7	84.0 ± 1.1	99.2 ± 0.4	99.1 ± 0.5				
	eSAME	80.1 ± 3.4	84.1 ± 0.9	99.2 ± 0.3	99.2 ± 0.7				

Experiments

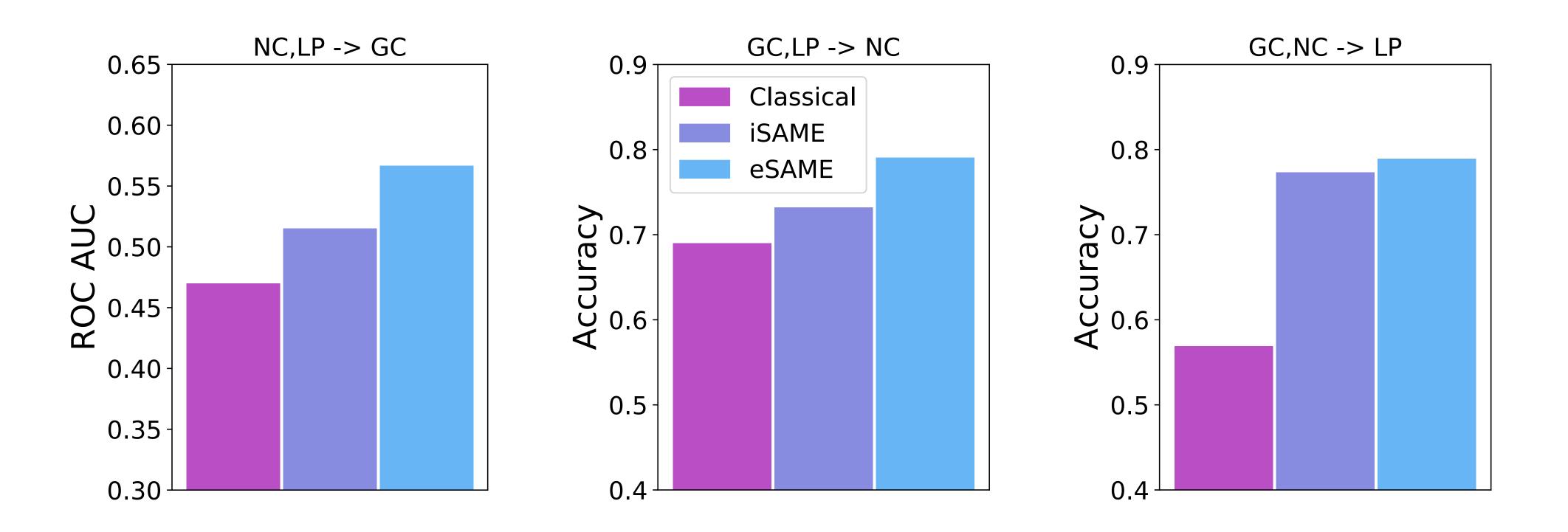
Do iSAME and eSAME lead to high quality node embeddings in the multi-task setting?

Table 2: Results for a single-task model trained in a classical supervised manner, a fine-tuned model (trained on all three tasks, and fine-tuned on the two shown tasks), and a linear classifier trained on node embeddings learned with our proposed strategies (iSAME, eSAME) in a multi-task setting.

	Task							Dat	taset					
GC	NC	LP	EN	ZYM	ES	PR	OTEL			DHFR			COX2	
			GC	NC	LP	GC	NC	LP	GC	NC	LP	GC	NC	LP
Classical End-to-End Training														
\checkmark			51.6			73.3			71.5			76.7		
	\checkmark			87.5			72.3			97.3			96.4	
		\checkmark			75.5			85.6			98.8			98.3
Fine-Tuning														
\checkmark	\checkmark		48.3	85.3		73.6	72.0		66.4	92.4		80.0	92.3	
\checkmark		\checkmark	49.3		71.6	69.6		80.7	65.3		58.9	80.2		50.9
	\checkmark	\checkmark		87.7	73.9		80.4	81.5		80.7	56.6		87.4	52.3
						iSA	ME (o	ours)						
\checkmark	\checkmark		50.1	86.1		73.1	76.6		71.6	94.8		75.2	95.4	
\checkmark		\checkmark	50.7		83.1	73.4		85.2	71.6		99.2	77.5		98.9
	\checkmark	\checkmark		86.3	83.4		79.4	87.7		96.5	99.3		95.5	99.0
_ ✓	\checkmark	\checkmark	50.0	86.5	82.3	71.4	76.6	87.3	71.2	95.5	99.5	75.4	95.2	99.2
eSAME (ours)														
\checkmark	\checkmark		51.7	86.1		71.5	79.2		70.1	95.7		75.6	95.5	
\checkmark		\checkmark	51.9		80.1	71.7		85.4	70.1		99.1	77.5		98.8
	\checkmark	\checkmark		86.7	82.2			86.3			99.4		95.6	99.1
_ ✓	\checkmark	\checkmark	51.5	86.3	81.1	71.3	79.6	86.8	70.2	95.3	99.5	77.7	95.7	98.8

Davide Buffelli

Experiments



Davide Buffelli

Experiments

Do iSAME and eSAME extract information that is not captured by classically trained multi-task models?

Table 3: Δ_m (%) results for a classical multi-task model (Cl), a fine-tuned model (FT; trained on all three tasks and fine-tuned on two) and a linear classifier trained on the node embeddings learned using our meta-learning strategies (iSAME, eSAME) in a multi-task setting.

	Task		Model	Dataset				
GC	NC	LP		ENZYMES	PROTEINS	DHFR	COX2	
			Cl	-0.1 ± 0.5	4.0 ± 1.0	-0.3 ± 0.2	0.5 ± 0.1	
1	(FT	-4.5 ± 1.2	0.1 ± 0.5	-7.4 ± 1.4	0.1 ± 0.4	
v	v		iSAME	-2.3 ± 0.9	2.7 ± 1.5	-1.2 ± 0.4	-1.6 ± 0.2	
			eSAME	-0.8 ± 0.8	3.2 ± 1.4	-1.8 ± 0.3	-1.2 ± 0.3	
			Cl	-25.3 ± 3.2	-5.3 ± 1.2	-28.3 ± 4.3	-21.4 ± 3.4	
.(1	FT	-5.1 ± 1.9	-5.4 ± 1.5	-24.5 ± 3.7	-22.6 ± 3.8	
v		v	iSAME	4.1 ± 0.5	-0.2 ± 0.9	0.2 ± 3.2	0.2 ± 0.5	
			eSAME	3.2 ± 0.4	-1.2 ± 1.1	-0.7 ± 3.4	-0.8 ± 0.7	
			Cl	7.2 ± 2.7	6.8 ± 0.9	-29.1 ± 7.7	-28.2 ± 4.5	
		1	FT	-1.0 ± 0.3	3.1 ± 1.2	-28.9 ± 6.4	-28.3 ± 4.2	
	V	v	iSAME	4.4 ± 1.1	6.1 ± 1.0	-0.1 ± 6.2	-0.6 ± 2.5	
			eSAME	3.9 ± 1.3	6.1 ± 1.1	0.1 ± 6.4	-0.6 ± 2.6	
			Cl	1.6 ± 1.3	2.9 ± 0.3	-18.9 ± 2.3	-16.9 ± 3.1	
\checkmark	\checkmark	\checkmark	iSAME	1.5 ± 1.0	2.2 ± 0.2	-0.5 ± 1.4	-0.9 ± 1.3	
			eSAME	1.8 ± 0.9	2.8 ± 0.2	-1.0 ± 1.7	-0.4 ± 1.2	

Davide Buffelli

Experiments

Can the node embeddings learned by iSAME and eSAME be used to perform multiple tasks with comparable or better performance than classical multi-task models?

Thank you for watching!

You can also contact us at: {davide.buffelli, fabio.vandin}@unipd.it

Don't hesitate to come to our virtual booth and have a chat.

