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Notation

Graph G = (V,E) = (A, X)

A = Adjacency Matrix
1 if@i,j)€eE
0 otherwise

A = ]RIlXIl, ai,j — {

A = A + I (with self loops)

X = Feature Matrix
X e R>d

D = Degree Matrix




Graph Embeddings

Goal: assign a meaningful vector representation to each node
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Applications

e Node Classification Recommender Systems,
Social Network Analysis,
Community Detection,
Transaction Networks (e.g. anomaly detection),
chemoinformatics (e.g. protein classification),

e Link Prediction

e Graph Classification

Two Scenarios:

A G

Transductive Inductive




Past Approaches



First Approaches

View the problem as a dimensionality reduction task.

Input: Adjacency Matrix (or graph-related matrix e.g. all-pairs shortest
path matrix)

“Basic” Techniques: Principal Components Analysis (PCA),
Multidimensional scaling (MDS)

“Advanced” Techniques: preserve some properties obtained from the
graph (e.g. pairwise distances)

i Isomap = A Global Geometric Framework for non-linear Dimensionality Reduction, (Science, 2000)

https://web.mit.edu/cocosci/Papers/sci_reprint.pdf

e | ocal Linear Em beddings (LLE) = Nonlinear dimensionality reduction by locally linear embedding, (Science, 2000)

http://www.robots.ox.ac.uk/~az/lectures/ml/lle.pdf

® LapIaCian eigen Mmaps (LE) = Laplacian eigenmaps and spectral techniques for embedding and clustering, (NeurlPS 2002)
http://web.cse.ohio-state.edu/~belkin.8/papers/LEM NIPS 01.pdf



https://web.mit.edu/cocosci/Papers/sci_reprint.pdf
http://www.robots.ox.ac.uk/~az/lectures/ml/lle.pdf
http://web.cse.ohio-state.edu/~belkin.8/papers/LEM_NIPS_01.pdf

Random Walk Approaches

DeepWalk

DeepWalk: Online learning of social representations, (KDD 2014) https://arxiv.org/abs/1403.6652

Idea: a random walk is a phrase and each node in the random walk is a word in the phrase
-> use the SkipGram model (word2vec)
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https://arxiv.org/abs/1403.6652

Random Walk Approaches

node2vec

node2vec: Scalable Feature Learning for Networks, (KDD 2016) https://arxiv.org/abs/1607.00653

introduces a biased random walking procedure which combines
BFS style and DFS style neighborhood exploration

Planetoid

Revisiting Semi-Supervised Learning with Graph Embeddings, (ICML 2016) https://arxiv.org/abs/1603.08861

Introduces an inductive variant and is capable of taking node
features into consideration



https://arxiv.org/abs/1607.00653
https://arxiv.org/abs/1603.08861

Graph Neural
Networks



Graph Neural Networks

Message Passing Framework
Neural Message Passing for Quantum Chemistry, (ICML 2017) https://arxiv.org/abs/1704.01212

Most models can be expressed in the following 3-steps formulation H=X,l=1,..L):

Create the message: m; L= MSG(h™! hl L €;i)

Aggregate messages from neighbours: Ml AGG({m v, e N(v)})

Update node representations: hl UPDATE({MZ.Z, hl.l_l})

 vodniager  bicden yer
Final embedding 7 7 An aggregation
of i-th node: hlL - K AV . process of k
s ., : iterations makes
LTS L TS LS e use of the subtree
e o = structures of
height k rooted at
every node



https://arxiv.org/abs/1704.01212

Graph Convolutional
Networks



Graph Convolutional
Networks

Idea: generalize Convolutional Neural networks (CNNs) to the
graph domain

Desired Properties:

e EXxploit local connectivity

e EXxploit compositionality of data
e \Weight-sharing between nodes/neighborhoods

e Computational and storage efficiency



Spectral-based Methods

LaplacianMatrix: . =D — A
Normalized Laplacian matrix: L = I, — D :AD >
Can be factored: I, = UAU?

Graph Fourier Transform: .7 (X) = Ulx

Graph Convolution with filter g:

(1)

where © denotes the Hadamard product. If we denote a
filter as gy = diag(U’g), then the graph convolution is
simplified as

x *xc go = UgyU'x (2)

Spectral-based methods follow this definition. The difference is in the choice of filter g
(usually a learnable filter).



Drawbacks of Spectral
Methods

Computationally expensive

Filters are domain dependent

Filters are not localized in space (solved by ChebNet & GCNs)
Load the whole graph into memory

Any change in the graph means a change in the eigenbasis

No clear definition of the Laplacian matrix on directed graphs



Graph Convolutional
Networks (GCN)

Semi-supervised classification with graph convolutional networks, (ICLR 2017) https://arxiv.org/abs/1609.02907

HY =X
Propagation rule:

HO+D) — a([)—%AD—%H(l)WU))

! ] _

V3 » Vé Vé
v{+1 — 0 1 + + w®
\ deg(v) + 1 \/deg(vl) + 1\/deg(v2) + 1 \/deg(vl) + 1\/d€8("3) + 1
[

1)

o = ReLU(x) = max(0,x)

Nice Mathematical properties:
- 1st order Chebyshev polynomial approximation of spectral graph convolutions


https://arxiv.org/abs/1609.02907

GraphSage

Inductive Representation Learning on Large Graphs, (NeurlPS 2017) https://arxiv.org/abs/1706.02216

- First Inductive GCN Framework
- Introduced the Sample and Aggregate strategy
- Train a set of aggregator functions instead of an embedding vector for each node

aggregator; %
- }/ label

1. Sample neighborhood 2. Aggregate feature information 3. Predict graph context and label
from neighbors using aggregated information


https://arxiv.org/abs/1706.02216

GraphSage

Algorithm 1: GraphSAGE embedding generation (i.e., forward propagation) algorithm

Input : Graph G(V, £); input features {x,, Vv € V}; depth K'; weight matrices
Wk Yk € {1, ..., K}; non-linearity o; differentiable aggregator functions
AGGREGATEy, Vk € {1, ..., K'}; neighborhood function N : v — 2V

Output : Vector representations z, for all v € V

1 hY «x,,VvoeV;

2 fork=1...K do

3 for v € Vdo

4 hf;),(v) ¢ AGGREGATE ({h¥~1 Vu € N(v)});

5 h* « o <W’*’ . CONCAT(hF~1, hj‘%(,b,)))

end
hy < hy/[[hyl2, Vv € V

6
7

8 end
9 7, < h YVoecVp




Real-World Use Cases

Pinterest’s recommendation system (3 billion nodes and 18 billion edges)
Graph Convolutional Neural Networks for Web-Scale Recommender Systems, (KDD 2018) https://arxiv.org/abs/1806.01973

Uber’s recommendation system
https://eng.uber.com/uber-eats-graph-learning/

Twitter Cortex (team led by Micheal M. Bronstein)

https://blog.twitter.com/en us/topics/company/2019/Twitter-acquires-Fabula-Al.html
https://cortex.twitter.com/en/research.html

Alibaba's recommendation system
AliGraph: A Comprehensive Graph Neural Network Platform (KDD 2019) https://arxiv.org/abs/1902.08730

KDD 2019 Applied Data Science
https://www.zdnet.com/article/apple-alibaba-amazon-and-the-gang-promote-state-of-the-art-in-ai-and-knowledge-
discovery-with-graphs/



https://arxiv.org/abs/1806.01973
https://eng.uber.com/uber-eats-graph-learning/
https://blog.twitter.com/en_us/topics/company/2019/Twitter-acquires-Fabula-AI.html
https://cortex.twitter.com/en/research.html
https://arxiv.org/abs/1902.08730
https://www.zdnet.com/article/apple-alibaba-amazon-and-the-gang-promote-state-of-the-art-in-ai-and-knowledge-discovery-with-graphs/
https://www.zdnet.com/article/apple-alibaba-amazon-and-the-gang-promote-state-of-the-art-in-ai-and-knowledge-discovery-with-graphs/

Paper Presentation:
“Infusing Knowledge into the Textual
Entailment Task Using Graph
Convolutional Networks”

Kapanipathi et al., AAAI 2020 https://arxiv.org/abs/1911.02060



https://arxiv.org/abs/1911.02060

The Textual Entailment Task

Input Text (or Premise)
e.g. “Maurita and Jade both were at the scene of the car crash.”

Hypothesis
e.g. “Multiple people saw the accident.”

Output Positive Entailment
Hypothesis can be proven by premise

Neutral Entailment
Premise says nothing about the truthness of the hypothesis

Negative Entailment
Premise contradicts the hypothesis

Applications question answering, information extraction, summarization, evaluation of
machine translation systems



The Textual Entailment Task

Demo hitps://demo.allennip.org/textual-entailment/

Demo Usage

Enter text or

Choose an example...

Premise

Maurita and Jade both were at the scene of the car crash.

Hypothesis

Multiple people saw the accident.

It is very likely that the premise entails the hypothesis.

E Judgment Probability
Entailment 81.1%
Contradiction 0.8%
Neutral 18.1%



https://demo.allennlp.org/textual-entailment/

KG-augmented Input:
- Premise

Entailment System - Hypothesis
(KES)

Word Embedding model
(e.g. word2vec, BERT)

v

Standard Text-based Model :

Text Embeddings

P = (plapn)
H= (hl”hm)

NLI Model

v

Output (global embedding)
t € Rk

Final Classifier
(e.g. MLP)

Knowledge Base

S

¥

Reasoning over Knowledge

Base

Subgraph
Extraction

GNN

\ 4

Output (subgraph embedding)
gout c Rd



Knowledge Base

KG-augmented Input:
_ - Premise
Entailment System - Hypothesis

(KES)

Word Embedding model

(e.g. word2vec, BERT)

Snnq,a_rd Text-based del

Reasoning over Knowledge :
Base

Text Embeddings

P ) Subgraph
) ->
(hl"

v

Output (subgraph embedding) -

Final Classifier
(e.g. MLP)



Standard Text-based Model

Text Embeddings

P=(p- p>->'

H=(hy,..,h)

m




KG-augmented Input:
- Premise

Entailment System - Hypothesis

(KES) +

Word Embedding model
(e.g. word2vec, BERT)

: Standard Text-based Model - +

Text Embeddings

P = (p19pn)
H= (hl”hm)

NLI Model

v

Output (global embedding)
t € Rk

Final Classifier
(e.g. MLP)

Reasoning over Knowledge
Base

Subgraph
Extraction

GNN

v

Output (subgraph embedding)
8our € R



Knowledge Base

Concept Net

“ConceptNet is a freely-available semantic network, designed to help computers understand
the meanings of words that people use.” http://conceptnet.io
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http://conceptnet.io
http://conceptnet.io

Knowledge Base

KG-augmented Input:
_ - Premise
Entailment System - Hypothesis

(KES)

Word Embedding model
(e.g. word2vec, BERT)

Standard Text-based Model

Text Embeddings

: P B Subgraph :
‘— (P p,,) * Extraction :

NLI Model
(hla . E
0utput (global embeddlng) E E

Final Classifier
(e.g. MLP)



Reasoning over Knowledge Base

Inputs: Text Embeddings P = (py,..p,), H = (hy,.., h,)

1.

N

map the terms in premise and hypothesis text to concepts in KG by performing a max-
substring match -> § is the set of mapped nodes.

Expand subgraph induced by S to include 1-hop neighbours
PPR filtering:
3.1 perform random walks with restart with a bias towards the nodes in $

3.2 exclude all nodes with a PPR score lower than 8
Add self-loops, and create premise supernode v, and hypothesis supernode v,

p
Encode resulting subgraph with R-GCN:

Wttt =p Z 2 —Wlhl =p ZGCN,,(A,,,H)

rek ve,/V rek



Reasoning over Knowledge
Base

......................................................................................................................................................................
......

Premise L W.h,
A young barefoot '®)
girl in a pink dress
is jumping
outside.

PPR
Threshold;

ConceptNet Ao

Hypothesis 5 : \ »

A child is playing. | Vi
Initial Subgraph IR _J | Fixed-length graph and
(entities + 1-hop Contextual Subgraph Encoding :: text representations for
neighbors) | Subgraph | i (R-GCN) final prediction :

f
000, 0-00)




Results

Models Scitail MultiNLI SNLI BreakingNLI
Text KES Text KES Text KES Text KES
match-LSTM 82.54 | 82.22(0.6) | 71.32 | 71.67(0.8) | 83.60 | 83.94 (0.6) | 65.11 78.72
BERT+match-LSTM 89.13 | 90.68 (0.2) | 7796 | 76.73(0.6) | 85.78 | 85.97 (0.6) | 59.42 77.59
HBMP 81.37 | 83.49(0.2) | 69.27 | 68.42(0.6) | 84.61 | 83.84(0.2) | 60.31 63.60
DecompAttn 76.57 | 72.43(0.8) | 6489 | 71.93(0.6) | 79.28 | 85.56 (0.6) | 51.3* 59.83
Existing Models with KG Text | Text+Graph | Text | Text+Graph | Text | Text+Graph | Text | Text+Graph
KIM (Chen et al. 2018) - NE - 76.4% - 88.6* - 83.1*
ConSeqNet (Wang et al. 2019) | 84.2* 85.2% 71.32 70.9 83.60 83.34 65.11 61.12

Table 1: Entailment accuracy results of KES with different text models compared to text-only entailment models (Text). Bold
values indicate where KES improves performance. PPR -values are shown in parentheses.*Reported values from related work.

PPR Scitail (17.74%) SNLI (11.5%) MultiNLI (17.5%)
Edges Nodes Edges | Nodes | Edges Nodes
0.2 42.65 10.14 80.29 19.83 76.27 16.15
0.4 26.72 7.48 25.70 8.15 33.82 6.48
0.6 15.53 4.35 14.08 4.65 23.97 3.44
0.8 11.67 3.04 9.98 3.18 20.27 2.05
0 0 (17.74%) 0 0(11.5%) 0 0(17.5%)
ConSeqNet No edges or new concepts are added from ConceptNet.
KIM Features based on fixed WordNet relations. No new concepts are added.

Table 2: Average number of nodes and edges (not explicitly mentioned in text) in combined premise and hypothesis subgraphs
by PPR threshold. * Average number of concepts explicitly mentioned in each premise and hypothesis text.



